Forced decision methods for the Python SDK
Describes the Forced Decision methods, which you can use to force users into a specific variation in Optimizely Feature Experimentation.
These methods will help test and debug various flows of your client applications by forcing users into a specific variation.
The Optimizely Feature Experimentation Python SDK will check forced decisions before making any decisions. If a matching item is found for the requested flag, the Python SDK will return the forced decision immediately (audience conditions and traffic allocations are ignored) before making normal decisions:
The following describes specific scenarios the Python SDK will follow:
- Flag-to-Decision – The Python SDK will look up at the beginning of any
decide
call for the given flag. If a matching Flag-to-Decision forced decision is found for the flag, it returns the decision. - Experiment-Rule-to-Decision – The Python SDK will look up at the beginning of the decision for the given experiment rule (of the flag key). If a matching Experiment-Rule-to-Decision forced decision is found for the flag, it returns the decision.
- Delivery-Rule-to-Decision – The Python SDK will look up at the beginning of the decision for the given delivery rule (of the flag key). If a matching Delivery-Rule-to-Decision forced decision is found, it returns the decision.
Warning
You must associate your variation(s) to a flag rule before calling any forced decision methods.
On forced decisions, SDK will fire impression events and notifications just like other normal decisions (unless disabled by the DISABLE_DECISION_EVENT option).
Note
These forced decisions are not persistent and will be cleared when the OptimizelyUserContext is re-initialized.
For more information about each method, click on the method name below:
OptimizelyDecisionContext
class OptimizelyDecisionContext(object):
def __init__(self, flag_key, rule_key):
OptimizelyForcedDecision
class OptimizelyForcedDecision(object):
def __init__(self, variation_key):
Set forced decision method - set_forced_decision()
Version
4.0.0
Description
Sets a forced decision (variation_key
) for a given OptimizelyDecisionContext
.
Parameters
This table lists the required and optional parameters for the Python SDK.
Parameter | Type | Description |
---|---|---|
context required | Class | An instance of OptimizelyDecisionContext with the required flag_key and optional rule_key for the forced decision you want to set. |
decision required | Class | An instance of OptimizelyForcedDecision with the required variation_key for the forced decision you want to set. |
Returns
A boolean value that indicates if setting the forced decision (variation_key
) was completed successfully.
Example
See the full Python SDK example here.
Get forced decision method - get_forced_decision()
Version
4.0.0
Description
Returns the forced decision (variation_key
) for a given OptimizelyDecisionContext
. Returns the null if there is no matching item.
Parameters
This table lists the required and optional parameters for the Python SDK.
Parameter | Type | Description |
---|---|---|
context required | Class | An instance of OptimizelyDecisionContext with the required flag_key and optional rule_key for the forced decision you want to get. |
Returns
A forced decision OptimizelyForcedDecision
instance for the context or nil if there is no matching item.
Example
See the full Python SDK example here.
Remove forced decision method - remove_forced_decision()
Version
4.0.0
Description
Removes the forced decision (variation_key
) for a given OptimizelyDecisionContext
.
Parameters
This table lists the required and optional parameters for the Python SDK.
Parameters | Type | Description |
---|---|---|
context required | Class | An instance of OptimizelyDecisionContext with the required flag_key and optional rule_key for the forced decision you want to remove. |
Returns
A success/failure boolean status if the forced decision (variation_key
) was removed.
Example
See the full Python SDK example here.
Remove all forced decisions method - remove_all_forced_decisions()
Version
4.0.0
Description
Removes all forced decisions (variation_key
) for the user context.
Parameters
This table lists the required and optional parameters for the Python SDK.
Parameters | Type | Description |
---|---|---|
None | N/A | N/A |
Returns
A success/failure boolean status.
Example
See the full Python SDK example here.
Full code example
from optimizely import optimizely, optimizely_user_context
optimizely_client = optimizely.Optimizely(sdk_key="<YOUR_SDK_KEY>")
user = optimizely_client.create_user_context("test_user", attributes)
flag_context = optimizely_user_context.OptimizelyUserContext.OptimizelyDecisionContext("flag-1",None)
flag_and_ab_test_context = optimizely_user_context.OptimizelyUserContext.OptimizelyDecisionContext("flag-1","ab-test-1")
flag_and_delivery_rule_context = optimizely_user_context.OptimizelyUserContext.OptimizelyDecisionContext("flag-1","delivery-1")
variation_a_forced_decision = optimizely_user_context.OptimizelyUserContext.OptimizelyForcedDecision("variation-a")
variation_b_forced_decision = optimizely_user_context.OptimizelyUserContext.OptimizelyForcedDecision("variation-b")
variation_on_forced_decision = optimizely_user_context.OptimizelyUserContext.OptimizelyForcedDecision("on")
# set a forced decision for a flag
success = user.set_forced_decision(flag_context, variation_a_forced_decision)
decision = user.decide("flag-1")
# set a forced decision for an ab-test rule
success = user.set_forced_decision(flag_and_ab_test_context, variation_b_forced_decision)
decision = user.decide("flag-1")
# set a forced variation for a delivery rule
success = user.set_forced_decision(flag_and_delivery_rule_context, variation_on_forced_decision)
decision = user.decide("flag-1")
# get forced variations
forced_decision = user.get_forced_decision(flag_context)
print(f"[ForcedDecision] variation_key = {forced_decision}")
# remove forced variations
success = user.remove_forced_decision(flag_and_ab_test_context)
success = user.remove_all_forced_decision()
See also
Source files
The source files are available on GitHub.
Updated 12 months ago