Jump to Content
Dev GuideAPI ReferenceUser Guide
HomeDev GuideAPI ReferenceRecommendations
Campaign
Configured Commerce
Content Management System
Content Marketing Platform
Customized Commerce
Digital Experience Platform
Experimentation Data
Feature Experimentation
Full Stack Experimentation
Optimizely Connect Platform
Optimizely Data Platform
Performance Edge
Web Experimentation
Integrations

v1.0.0-SaaS-Core
v1.2.0-forms
v1.4.0-community-api
v1.5.0-content-delivery-api
v1.6.0-content-management-api
v1.7.0-content-definitions-api
v11.0.0-cms
v12.0.0-cms

Dev GuideAPI ReferenceUser GuideGitHubNuGetDev CommunitySubmit a ticketLog In

GitHubNuGetDev CommunitySubmit a ticketLog In

Content Management System
v12.0.0-cms

Search

Loading…

Get started with CMS
	Get started with CMS 12
	Set up a development environment
	Learn basic editing
	Create a CMS starter project
	System requirements for Optimizely
	CMS documentation videos
	Integrate CMS with other Optimizely products

Install CMS
	Install Optimizely (ASP.NET Core)
	Install a sample site
	Resolve NuGet dependency conflicts

Learn CMS
	Learning path
	Developer prerequisites
	What is a CMS?
	Technology stack
	Alloy demonstration templates
	Initial configuration
	Upgrade Optimizely
	Content model and views
	Create and edit content
	Media support
	Content tree and routing
	Link collections and navigation
	Security checklist
	Deployment
	Pluggable UI

Upgrade to CMS 12
	Upgrade to CMS 12	Breaking changes in CMS 12
	Why upgrade CMS 12?
	Upgrade Assistant
	Upgrade to CMS Core 12.17.0

	Upgrade to CMS 11	Breaking changes in CMS 11
	New NuGet packages
	Upgrade Optimizely Mail 10 to CMS 11
	Upgrade Episerver Relate to CMS 11

	Upgrade to CMS 10	Breaking changes in CMS 10

	Upgrade to CMS 9	Breaking changes in CMS 9
	Episerver Mail 8

	Upgrade to CMS 8	Breaking changes in CMS 8
	Changes to content loading in CMS 8
	Changes to the Category API in CMS 8
	Add-on support for CMS 8
	Upgrade CMO with CMS 8
	Upgrade from MVC 4 to 5

	Upgrade to CMS 7.5	EPiServer and OWIN
	Upgrading to .NET Framework 4.5
	Migrating VPP-based files to the new media system

	Upgrade to CMS 7	Breaking changes in CMS 7

	Upgrade from legacy versions

Architecture
	Architecture

BLOB storage and providers
	BLOB storage and providers
	Add Azure BLOB provider to your .NET Core application

Cache
	Cache options and methods
	Cache objects
	Cache read-only objects
	Configure in-memory cache limits

Client resources
	Client resources

Configure
	Configure CMS
	Cms section
	CmsUI section
	Configure DataAccess and DynamicDataStore
	module.config
	Change URLs for edit and admin views
	Validate links

Content
	Content
	Content types
	Content templates
	IContentRepository
	Persist IContent instances
	Synchronization
	Validating object instances
	ContentType attribute
	Group content types and properties
	Content Metadata properties
	EditHint in MVC
	Content versions
	Create a page programmatically
	Select content
	Convert page types for pages (Legacy)
	Refactor content type classes
	Multilingual content
	Properties	Built-in property types
	Write custom attributes
	Restrict content types in properties
	Single or multiple list options
	Built-in auto-suggestion editor
	Property attributes
	Use block as property
	Custom properties
	List properties
	Generic PropertyList
	Property controls (Legacy)

	Links	Link to other content

	Assets and media	Media types and templates
	Media examples
	Content assets and folders
	Customize the editing preview for media
	Integrate the CMP DAM Asset Picker into CMS

	Content approvals	Approvals
	Approval definitions
	Email notifications

	Content providers	Configure content providers

	Inline edit blocks
	Resolve the currently loaded content context

Deploy
	Plan deployments
	Deploy CMS
	Deployment scenarios	Deploy to Azure Web Apps
	Deploy to Windows servers

	Install database schema
	Automatic schema updates
	Set up multiple sites
	Manage cloud licenses
	Configure CDN
	Configure email server
	Database mode
	Create a Docker file for a CMS app
	Store UTC date and time in the database (Legacy)

Dynamic content (Legacy)
	Dynamic content (Legacy)

Dynamic Data Store
	Dynamic Data Store
	Configure DDS
	Index properties
	Map stores
	Support LINQ
	Identity, date, and time

Editing ui
	Editing user interface
	On-page editing with client-side rendering
	Register a custom editor examples
	Create an editor widget

events
	Manage events and event providers
	Use the Event API
	Create a custom event provider
	Add Azure event provider to .NET Core application
	Configure events over WCF (Legacy)

Forms
	Forms
	XForms (Legacy)

Globalization
	Globalization
	Globalization scenarios
	Localize the user interface
	Configure a custom localization provider
	Retrieve localization service
	Determine languages

Initialize CMS
	Initialize CMS
	Create an initialization module
	Dependency injection

Logging
	Write log messages
	Log activity

Personalize content
	Personalize content
	Create custom audience criteria
	Example – Create audience criteria
	Localize the audience criterion
	Editor templates
	Configure personalized content
	Disable personalized content
	Session handling in audience criteria

Projects
	Projects
	Program projects

Render content
	Render content
	View models and partial views
	TemplateDescriptor and tags
	Select templates
	Display channels	Change template programmatically

	Display options
	Preview rendering for blocks
	Add editing attributes
	Render properties with tag helpers

Routing
	Routing
	Partial routing	Example of News partial routing

	Route to BLOB
	Internationalized resource identifiers (IRIs)

Scheduled jobs
	Scheduled jobs

Search
	Search
	Search for pages based on page type
	Add search providers
	Search and filter

Security
	Security
	Integrate Azure AD using OpenID Connect
	ASP.NET Identity
	Mixed-mode authentication
	Permissions to functions
	Decoupled setup
	Virtual roles
	Content Security Policy
	Cookie usage

User interface
	User interface
	Add a module initializer
	Configure Shell modules
	Configure CMS user interface
	Context-sensitive components
	Service locator
	Describe content in the UI
	Dialog boxes
	Shell profile
	Store architecture
	Message service pool
	Publish and subscribe messaging system
	Debug CMS UI
	Dojo JavaScript framework
	Create a React component
	Plug in a gadget
	Headless – enable multi-channel content in CMS
	Create MVC component
	Extend the navigation	Use menu providers
	Upgrade navigation
	Add and configure menu items
	Highlight parent menu items

	Command pattern	Global toolbar commands plugin
	Plug in commands
	Command builders

	Edit objects	UI wrapper types
	Configure the default editor wrapper

	Plug-in areas
	Views	Replace a component globally
	Hide or control access to customized components
	Change a view through configuration
	Create a component
	Create a container
	Create a view
	Plug components into a view

	Drag-and-drop
	WebSocket support
	Extend the Tasks pane with custom queries

Apps
	Apps (add-ons) platform compatibility
	Package and deploy CMS apps
	Install CMS apps (add-ons)
	Integrate Optimizely apps
	Develop CMS apps	About the app verification process
	Migrate apps to ASP.NET Core

	Optimizely App Directory
	Optimizely A/B testing (legacy)
	AvaTax tax compliance
	MA Connectors	Connect for Acoustic (Silverpop)
	Connect for Campaign
	Connect for Delivra
	Connect for Eloqua
	Connect for HubSpot
	Connect for Marketo
	Connect for Microsoft Dynamics CRM
	Connect for Pardot
	Connect for Salesforce
	Connect for Salesforce Marketing Cloud
	Custom connector

	Optimizely DataCash payment provider
	Optimizely DIBS payment provider	DIBS installation and configuration

	Optimizely Forms
	Google Analytics for Optimizely
	Optimizely Labs
	Optimizely Languages
	Optimizely PayPal payment provider
	Optimizely PDF Preview
	PowerSlice for Optimizely Content Management System
	Optimizely Self-Optimizing Block
	Optimizely Spellchecker for TinyMCE
	Optimizely Strategy Container Block
	TinyMCE editor	TinyMCE default settings
	TinyMCE property configuration
	TinyMCE configuration API
	TinyMCE custom style formats
	TinyMCE plug-ins
	TinyMCE example: Allow added custom relative paths in TinyMCE

	TinyMCE editor (Legacy)	Property settings for TinyMCE (Legacy)

User notifications
	User notifications
	User notification examples
	Subscription keys

File providers
	File Providers

Optimizely PDF Preview
Describes the Optimizely PDF Preview add-on, which lets editors preview PDF documents in edit view.

Suggest Edits

When accessing the edit view in Optimizely Content Management System (CMS), you can select a PDF document from a media folder, to preview its content.

In the PdfPreview package, there is a class named PdfFile which handles uploaded files with the .pdf extension.

Requirements

	No additional license fee for the add-on.
	An Optimizely Content Management System (CMS) website with the EPiServer.PdfPreview package installed.
	See Add-ons platform compatibility for package and version information.

Installation

	Installed through NuGet.

PDF Preview is useful for websites where you manage multiple content items in PDF format.

User scenarios

These are the typical user scenarios for adding PDF preview to your solution.

The system does not have a model for handling PDF files

If the system does not have a model for handling PDF files, the default PdfFile model provided by the package is used. Editors can now preview PDF files in edit view without any extra steps.

The system already has a model for handling PDF files

By default, the ContentMediaResolver class from CMS Core gets the first matching media implementation type registered for an extension. If there is an existing type registered for “pdf,” the PdfFileMedia implementation in the Optimizely package is used, but the existing type should be chosen in this case.

To change this default behavior, a media resolver class named PdfContentMediaResolver is used to ignore the PdfFile type in the Optimizely package, and thus, the existing registered media type is the candidate.

PdfContentMediaResolver inherits ContentMediaResolver and overrides the Type GetFirstMatching(string extension) method to handle the business logic above.

To turn on the PDF preview, the PDF media model must implement the IPdfFile interface. For example:

C#
[ContentType(DisplayName = "PdfFile", GUID = "…", Description = "")]
[MediaDescriptor(ExtensionString = "pdf")]
public class PdfFile: MediaData, IPdfFile {}

📘
Note
Due to limitations, after installing the add-on, you can preview only newly uploaded PDFs. You must upload existing PDFs again to be previewed.

Updated about 1 month ago

	Table of Contents
		
Requirements

	
Installation

	
User scenarios
	The system does not have a model for handling PDF files
	The system already has a model for handling PDF files

